2-stage Anchor Generator: Fast RCNN, Faster RCNN, Mask RCNN
class AnchorGenerator(object):
def __init__(self, base_size, scales, ratios, scale_major=True, ctr=None):
self.base_size = base_size
self.scales = torch.Tensor(scales)
self.ratios = torch.Tensor(ratios)
self.scale_major = scale_major
self.ctr = ctr
self.base_anchors = self.gen_base_anchors()
@property
def num_base_anchors(self):
return self.base_anchors.size(0)
def gen_base_anchors(self):
w = self.base_size
h = self.base_size
if self.ctr is None:
x_ctr = 0.5 * (w - 1)
y_ctr = 0.5 * (h - 1)
else:
x_ctr, y_ctr = self.ctr
h_ratios = torch.sqrt(self.ratios)
w_ratios = 1 / h_ratios
if self.scale_major:
ws = (w * w_ratios[:, None] * self.scales[None, :]).view(-1)
hs = (h * h_ratios[:, None] * self.scales[None, :]).view(-1)
else:
ws = (w * self.scales[:, None] * w_ratios[None, :]).view(-1)
hs = (h * self.scales[:, None] * h_ratios[None, :]).view(-1)
base_anchors = torch.stack(
[
x_ctr - 0.5 * (ws - 1), y_ctr - 0.5 * (hs - 1),
x_ctr + 0.5 * (ws - 1), y_ctr + 0.5 * (hs - 1)
],
dim=-1).round()
return base_anchors
1-stage Grid Anchor Generator: YOLO
class AnchorGenerator(object):
def __init__(self, base_size, scales, ratios, scale_major=True, ctr=None):
self.base_size = base_size
self.scales = torch.Tensor(scales)
self.ratios = torch.Tensor(ratios)
self.scale_major = scale_major
self.ctr = ctr
self.base_anchors = self.gen_base_anchors()
@property
def num_base_anchors(self):
return self.base_anchors.size(0)
def grid_anchors(self, featmap_size, stride=16, device='cuda'):
base_anchors = self.base_anchors.to(device)
feat_h, feat_w = featmap_size
shift_x = torch.arange(0, feat_w, device=device) * stride
shift_y = torch.arange(0, feat_h, device=device) * stride
shift_xx, shift_yy = self._meshgrid(shift_x, shift_y)
shifts = torch.stack([shift_xx, shift_yy, shift_xx, shift_yy], dim=-1)
shifts = shifts.type_as(base_anchors)
# first feat_w elements correspond to the first row of shifts
# add A anchors (1, A, 4) to K shifts (K, 1, 4) to get
# shifted anchors (K, A, 4), reshape to (K*A, 4)
all_anchors = base_anchors[None, :, :] + shifts[:, None, :]
all_anchors = all_anchors.view(-1, 4)
# first A rows correspond to A anchors of (0, 0) in feature map,
# then (0, 1), (0, 2), ...
return all_anchors
Code from mmdetection
Related
- Focal Loss in Object Detection: PyTorch Implementation(with CUDA)
- Deformable Convolution in Object Detection: PyTorch Implementation(with CUDA)
- (Soft)NMS in Object Detection: PyTorch Implementation(with CUDA)
- FPN for Object Detection: PyTorch Implementation
- RoIPooling in Object Detection: PyTorch Implementation(with CUDA)
- From Classification to Panoptic Segmentation: 7 years of Visual Understanding with Deep Learning
- Convolutional Neural Network Must Reads: Xception, ShuffleNet, ResNeXt and DenseNet
- Object Detection Must Reads(1): Fast RCNN, Faster RCNN, R-FCN and FPN
- Object Detection Must Reads(2): YOLO, YOLO9000, and RetinaNet
- Object Detection Must Reads(3): SNIP, SNIPER, OHEM, and DSOD