Metric of Image Segmentation: Mean IOU(in Numpy)

 

Mean IOU

Intersection-Over-Union (IoU)

IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth.

For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them.

Numpy Implementation

import numpy as np

def intersect_and_union(pred_label, label, num_classes, ignore_index):
    mask = (label != ignore_index)
    pred_label = pred_label[mask]
    label = label[mask]

    intersect = pred_label[pred_label == label]
    area_intersect, _ = np.histogram(
        intersect, bins=np.arange(num_classes + 1))
    area_pred_label, _ = np.histogram(
        pred_label, bins=np.arange(num_classes + 1))
    area_label, _ = np.histogram(label, bins=np.arange(num_classes + 1))
    area_union = area_pred_label + area_label - area_intersect

    return area_intersect, area_union, area_pred_label, area_label


def mean_iou(results, gt_seg_maps, num_classes, ignore_index):
    num_imgs = len(results)
    assert len(gt_seg_maps) == num_imgs
    total_area_intersect = np.zeros((num_classes, ), dtype=np.float)
    total_area_union = np.zeros((num_classes, ), dtype=np.float)
    total_area_pred_label = np.zeros((num_classes, ), dtype=np.float)
    total_area_label = np.zeros((num_classes, ), dtype=np.float)
    for i in range(num_imgs):
        area_intersect, area_union, area_pred_label, area_label = \
            intersect_and_union(results[i], gt_seg_maps[i], num_classes,
                                ignore_index=ignore_index)
        total_area_intersect += area_intersect
        total_area_union += area_union
        total_area_pred_label += area_pred_label
        total_area_label += area_label
    all_acc = total_area_intersect.sum() / total_area_label.sum()
    acc = total_area_intersect / total_area_label
    iou = total_area_intersect / total_area_union

    return all_acc, acc, iou

Evaluation Script

    def evaluate(self, results, metric='mIoU', logger=None, **kwargs):
        """Evaluate the dataset.

        Args:
            results (list): Testing results of the dataset.
            metric (str | list[str]): Metrics to be evaluated.
            logger (logging.Logger | None | str): Logger used for printing
                related information during evaluation. Default: None.

        Returns:
            dict[str, float]: Default metrics.
        """

        if not isinstance(metric, str):
            assert len(metric) == 1
            metric = metric[0]
        allowed_metrics = ['mIoU']
        if metric not in allowed_metrics:
            raise KeyError('metric {} is not supported'.format(metric))

        eval_results = {}
        gt_seg_maps = self.get_gt_seg_maps()
        if self.CLASSES is None:
            num_classes = len(
                reduce(np.union1d, [np.unique(_) for _ in gt_seg_maps]))
        else:
            num_classes = len(self.CLASSES)

        all_acc, acc, iou = mean_iou(
            results, gt_seg_maps, num_classes, ignore_index=self.ignore_index)
        summary_str = ''
        summary_str += 'per class results:\n'

        line_format = '{:<15} {:>10} {:>10}\n'
        summary_str += line_format.format('Class', 'IoU', 'Acc')
        if self.CLASSES is None:
            class_names = tuple(range(num_classes))
        else:
            class_names = self.CLASSES
        for i in range(num_classes):
            iou_str = '{:.2f}'.format(iou[i] * 100)
            acc_str = '{:.2f}'.format(acc[i] * 100)
            summary_str += line_format.format(class_names[i], iou_str, acc_str)
        summary_str += 'Summary:\n'
        line_format = '{:<15} {:>10} {:>10} {:>10}\n'
        summary_str += line_format.format('Scope', 'mIoU', 'mAcc', 'aAcc')

        iou_str = '{:.2f}'.format(np.nanmean(iou) * 100)
        acc_str = '{:.2f}'.format(np.nanmean(acc) * 100)
        all_acc_str = '{:.2f}'.format(all_acc * 100)
        summary_str += line_format.format('global', iou_str, acc_str,
                                          all_acc_str)
        print_log(summary_str, logger)

        eval_results['mIoU'] = np.nanmean(iou)
        eval_results['mAcc'] = np.nanmean(acc)
        eval_results['aAcc'] = all_acc

        return eval_results